Algorithm-Hardware Co-Design of Split-Radix Discrete Galois Transformation for KyberKEM

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING(2023)

引用 0|浏览4
暂无评分
摘要
KyberKEM is one of the final round key encapsulation mechanisms in the NIST post-quantum cryptography competition. Number theoretic transform (NTT), as the computing bottleneck of KyberKEM, has been widely studied. Discrete Galois Transformation (DGT) is a variant of NTT that reduces transform length into half but requires more multiplication operations than the latest NTT algorithm in theoretical analysis. This paper proposes the split-radix DGT, a novel DGT variant utilizing the split-radix method, to reduce the computing complexity without compromising the transform length. Specifically, for length-128 polynomial, the split-radix DGT algorithm saves at least 10% multiplication operations compared with the latest NTT algorithm in theoretical analysis. Furthermore, we proposed a unified split-radix DGT processor with the dedicated stream permutation network for KyberKEM and implemented it on the Xilinx Artix-7 FPGA. The processor achieves at least 49.4% faster transformation and 65.3% faster component-wise multiplication, with at most 87% and 32% LUT-NTT area-time product and LUT-CWM area-time product, compared with the state-of-the-art polynomial multipliers in KyberKEM with the same BFU setting on similar platforms. Lastly, we designed a highly efficient KyberKEM architecture using the proposed split-radix DGT processor. The implementation results on Artix-7 FPGA show significant performance improvements over the state-of-the-art KyberKEM designs.
更多
查看译文
关键词
Discrete galois transform,split-radix,negative wrapped convolution,post-quantum cryptography,key encapsulation mechanism,hardware,FPGA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要