谷歌浏览器插件
订阅小程序
在清言上使用

Bounds on the spectrum of nonsingular triangular $(0,1)$-matrices

arXiv (Cornell University)(2020)

引用 0|浏览0
暂无评分
摘要
Let $K_n$ be the set of all nonsingular $n\times n$ lower triangular $(0,1)$-matrices. Hong and Loewy (2004) introduced the numbers $$ c_n={\rm min}\{\lambda\mid \lambda~\text{is an eigenvalue of}~XX^{\rm T},~X\in K_n\},\quad n\in\mathbb{Z}_+. $$ A related family of numbers was considered by Ilmonen, Haukkanen, and Merikoski (2008): $$ C_n={\rm max}\{\lambda\mid \lambda~\text{is an eigenvalue of}~XX^{\rm T},~X\in K_n\},\quad n\in\mathbb{Z}_+. $$ These numbers can be used to bound the singular values of matrices belonging to $K_n$ and they appear, e.g., in eigenvalue bounds for power GCD matrices, lattice-theoretic meet and join matrices, and related number-theoretic matrices. In this paper, it is shown that for $n$ odd, one has the lower bound $$ c_n\geq \frac{1}{\sqrt{\frac{1}{25}\varphi^{-4n}+\frac{2}{25}\varphi^{-2n}-\frac{2}{5\sqrt{5}}n\varphi^{-2n}-\frac{23}{25}+n+\frac{2}{25}\varphi^{2n}+\frac{2}{5\sqrt{5}}n\varphi^{2n}+\frac{1}{25}\varphi^{4n}}}, $$ and for $n$ even, one has $$ c_n\geq \frac{1}{\sqrt{\frac{1}{25}\varphi^{-4n}+\frac{4}{25}\varphi^{-2n}-\frac{2}{5\sqrt{5}}n\varphi^{-2n}-\frac{2}{5}+n+\frac{4}{25}\varphi^{2n}+\frac{2}{5\sqrt{5}}n\varphi^{2n}+\frac{1}{25}\varphi^{4n}}}, $$ where $\varphi$ denotes the golden ratio. These lower bounds improve the estimates derived previously by Mattila (2015) and Altinisik et al. (2016). The sharpness of these lower bounds is assessed numerically and it is conjectured that $c_n\sim 5\varphi^{-2n}$ as $n\to\infty$. In addition, a new closed form expression is derived for the numbers $C_n$, viz. $$ C_n=\frac14 \csc^2\bigg(\frac{\pi}{4n+2}\bigg)=\frac{4n^2}{\pi^2}+\frac{4n}{\pi^2}+\bigg(\frac{1}{12}+\frac{1}{\pi^2}\bigg)+\mathcal{O}\bigg(\frac{1}{n^2}\bigg),\quad n\in\mathbb{Z}_+. $$
更多
查看译文
关键词
spectrum,nonsingular triangular,bounds
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要