Exploiting wavelength diversity for high resolution time-of-flight 3D imaging

arXiv (Cornell University)(2020)

引用 0|浏览0
暂无评分
摘要
State-of-the-art time-of-flight (ToF) based 3D sensors suffer from poor lateral and depth resolutions. In this work, we introduce a novel sensor concept that provides ToF-based 3D measurements of real world objects with depth precisions up to 35 micrometers and point cloud densities at the native sensor-resolutions of state-of-the-art CMOS/CCD cameras (up to several megapixels). Unlike other continuous-wave amplitude-modulated ToF principles, our approach exploits wavelength diversity for an interferometric surface measurement of macroscopic objects with rough or specular surfaces. Based on this principle, we introduce three different embodiments of prototype sensors, exploiting three different sensor architectures.
更多
查看译文
关键词
wavelength diversity,3d,imaging,time-of-flight
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要