Deep Learning Applications in Single-Cell Omics Data Analysis

bioRxiv (Cold Spring Harbor Laboratory)(2021)

引用 0|浏览0
暂无评分
摘要
Abstract Traditional bulk sequencing methods are limited to measuring the average signal in a group of cells, potentially masking heterogeneity, and rare populations. The single-cell resolution, however, enhances our understanding of complex biological systems and diseases, such as cancer, the immune system, and chronic diseases. However, the single-cell technologies generate massive amounts of data that are often high-dimensional, sparse, and complex, thus making analysis with traditional computational approaches difficult and unfeasible. To tackle these challenges, many are turning to deep learning (DL) methods as potential alternatives to the conventional machine learning (ML) algorithms for single-cell studies. DL is a branch of ML capable of extracting high-level features from raw inputs in multiple stages. Compared to traditional ML, DL models have provided significant improvements across many domains and applications. In this work, we examine DL applications in genomics, transcriptomics, spatial transcriptomics, and multi-omics integration, and address whether DL techniques will prove to be advantageous or if the single-cell omics domain poses unique challenges. Through a systematic literature review, we find that DL has not yet revolutionized or addressed the most pressing challenges of the single-cell omics field. However, using DL models for single-cell omics has shown promising results (in many cases outperforming the previous state-of-the-art models) in data preprocessing and downstream analysis, but many DL models still lack the needed biological interpretability. Although developments of DL algorithms for single-cell omics have generally been gradual, recent advances reveal that DL can offer valuable resources in fast-tracking and advancing research in single-cell. Abstract Figure
更多
查看译文
关键词
deep learning,data,single-cell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要