TRAF2, an innate immune sensor, reciprocally regulates mitophagy and inflammation to maintain cardiac myocyte homeostasis

bioRxiv (Cold Spring Harbor Laboratory)(2021)

引用 0|浏览1
暂无评分
摘要
ABSTRACT Mitochondrial damage triggers cell death signaling with catastrophic consequences in long-lived and irreplaceable cells, such as cardiac myocytes. Sensing of leaked mitochondrial DNA upon mitochondrial damage is also a potent trigger of inflammation. Whether the innate immune response pathways monitor mitochondrial damage in mitochondria-rich cardiac myocytes to prevent inflammation and cell death, remains unknown. TRAF2, an adaptor protein downstream of innate immune receptors, localizes to the mitochondria in the unstressed heart, with increased mitochondrial targeting in cardiomyopathic human hearts and after cardiac ischemia-reperfusion injury in mice. Inducible cardiomyocyte-specific deletion of TRAF2 in young adult mice impairs mitophagy with rapid decline in mitochondrial quality, upregulates TLR9 expression in cardiac myocytes, and results in inflammation and cell death manifesting as a fulminant cardiomyopathy. Preventing TLR9-mediated mitochondrial DNA sensing and resultant inflammation provides a short-term reprieve from cardiomyopathy, but persistence of damaged mitochondria results in long-term recrudescence. Restoration of wild-type TRAF2, but not the E3 ubiquitin ligase deficient mutant, improves mitochondrial quality and rescues cardiomyopathy to restore homeostasis. Thus, the innate immune response acts via TRAF2 as the first line of defense against mitochondrial damage by orchestrating homeostatic mitophagy to dampen myocardial inflammation and prevent cell death.
更多
查看译文
关键词
traf2,cardiac myocyte homeostasis,innate immune sensor,inflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要