BIM can help decarbonize the construction sector: life cycle evidence from Pavement Management Systems

arXiv (Cornell University)(2022)

引用 0|浏览0
暂无评分
摘要
Transforming the construction sector is key to reaching net-zero, and many stakeholders expect its decarbonization through digitalization. But no quantified evidence has been brought to date. We propose the first environmental quantification of the impact of Building Information Modeling (BIM) in the construction sector. Specifically, the direct and indirect greenhouse gas (GHG) emissions generated by a monofunctional BIM to plan road maintenance, a Pavement Management System (PMS), are evaluated using field data from France. The related carbon footprints are calculated following a life cycle approach, using different sources of data, including ecoinvent v3.6, and the IPCC 2013 GWP 100a characterization factors. Three design-build-maintain pavement alternatives are compared: scenario 1 relates to a massive design and surface maintenance, scenario 2 to a progressive design and pre-planned structural maintenance, and scenario 3 to a progressive design and tailored structural maintenance supported by the PMS. First, results show negligible direct emissions due to the PMS existence: 0.02% of the life cycle emissions of scenario 3. Second, complementary sensitivity analyses show that using a PMS is climate-positive over the life cycle when pavement subgrade bearing capacity improves over time, and climate-neutral otherwise. The GHG emissions savings using BIM can reach up to 30% of the life cycle emissions compared to other scenarios, and 65% when restraining the scope to maintenance and rehabilitation and excluding original pavement construction. Third, the neutral effect of BIM in case of a deterioration of the bearing capacity of the subgrade may be explained by design practices and safety margins, that could be enhanced using BIM. Fourth, the decarbonization potential of a multifunctional BIM is discussed, and research perspectives are presented.
更多
查看译文
关键词
pavement management systems,construction sector,bim
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要