An effective catalyst carrier SiO2: Enhancing catalytic and combustion properties of CuFe2O4 on energetic components

DEFENCE TECHNOLOGY(2024)

引用 0|浏览0
暂无评分
摘要
To enhance the catalytic activity of copper ferrite (CuFe2O4) nanoparticle and promote its application as combustion catalyst, a low-cost silicon dioxide (SiO2) carrier was employed to construct a novel CuFe2O4/ SiO2 binary composites via solvothermal method. The phase structure, morphology and catalytic activity of CuFe2O4/SiO2 composites were studied firstly, and thermal decomposition, combustion and safety performance of ammonium perchlorate (AP) and 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) with it affecting were then systematically analyzed. The results show that CuFe2O4/SiO2 composite can remarkably either advance the decomposition peak temperature of AP and RDX, or reduce the apparent activation energy at their main decomposition zone. Moreover, the flame propagation rate of RDX was promoted by about 2.73 times with SiO2 content of 3 wt%, and safety property of energetic component was also improved greatly, in which depressing the electrostatic discharge sensitivity of pure RDX by about 1.89 times. In addition, the effective range of SiO2 carrier content in the binary catalyst is found to be 3 to 5 wt%. Therefore, SiO2 opens a new insight on the design of combustion catalyst carrier and will promote the application of CuFe2O4 catalyst in solid propellant. (c) 2023 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Copper ferrite,Silicon dioxide,Combustion catalyst,Thermal decomposition,Laser ignition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要