Diffusion mechanisms between La2SiO5 and SiO2 during formation of textured lanthanum silicate oxyapatite crystals

CERAMICS INTERNATIONAL(2023)

引用 0|浏览2
暂无评分
摘要
Lanthanum silicate oxyapatite (LSO) is a promising alternative electrolyte for solid oxide fuel cell (SOFC) applications. They exhibit anisotropic oxide-ionic conduction; therefore, a preferential crystal orientation along the c-axis is necessary to achieve optimal conductivity. This study is performed to understand the reaction mechanisms involved in the formation of an LSO layer at the interface of the La2SiO5/SiO2 diffusion pair during reactive sintering at high temperatures. Different La2SiO5/SiO2 bilayers were fabricated in sandwich-type structures using silica-type quartz or La2SiO5 supports obtained via electrophoresis and uniaxial pressing, respectively. These supports were pre-sintered and then coated with a suspension of the opposite component. The diffusion pairs were isothermally heated at 1500 degrees C at different holding times (10, 20, and 40 h) and at 1600 degrees C for 10 h. Their surfaces and cross-sections were investigated via X-ray diffraction, scanning electron microscopy (SEM) observations, energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy.Experimental results show that two different driving forces were involved in the nucleation and growth of apatite crystals. The first is the chemical potential gradient in lanthanum between the components of the layers, and the second is the electric field created to preserve the electroneutrality of the system. The predominant diffusing species in this bilayer system were La+III and O-II, and their diffusion is enhanced by the formation of a glassy phase on the silica grains through the transformation of silica-type quartz into cristobalite. The formation of a La2Si2O7 intermediate phase was detected, which is vital to the interdiffusion of species and the nucleation and growth of oriented apatite crystals. The porosity gradient observed in the cross-section after reactive diffusion suggests the possibility of achieving an SOFC half-cell device via this process.
更多
查看译文
关键词
Diffusion mechanism,Reactive sintering,Lanthanum silicate oxyapatites,Textured microstructure,SOFC
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要