谷歌浏览器插件
订阅小程序
在清言上使用

Dimethomorph Activity and Itseffect on Morphology in Different Oomycete Species of Economic and Veterinary Interest

Journal of fish diseases(2024)

引用 0|浏览6
暂无评分
摘要
Journal of Fish DiseasesEarly View e13925 SHORT COMMUNICATION Dimethomorph activity and its effect on morphology in different oomycete species of economic and veterinary interest Irene Maja Nanni, Irene Maja Nanni Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy Contribution: Conceptualization, ​Investigation, Methodology, Writing - original draft, SupervisionSearch for more papers by this authorPerla Tedesco, Perla Tedesco orcid.org/0000-0001-8962-9929 Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy Contribution: Conceptualization, ​Investigation, Methodology, Writing - original draft, SupervisionSearch for more papers by this authorDavid Baldo, David Baldo Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy Contribution: Methodology, ​Investigation, Writing - review & editing, SupervisionSearch for more papers by this authorRoberta Galuppi, Roberta Galuppi Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy Contribution: Writing - review & editing, SupervisionSearch for more papers by this authorMarina Collina, Corresponding Author Marina Collina [email protected] Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy Correspondence Marina Collina, Department of Agricultural and Food Sciences (DISTAL), University of Bologna – Viale G. Fanin 42, Bologna 40127, Italy. Email: [email protected] Contribution: SupervisionSearch for more papers by this author Irene Maja Nanni, Irene Maja Nanni Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy Contribution: Conceptualization, ​Investigation, Methodology, Writing - original draft, SupervisionSearch for more papers by this authorPerla Tedesco, Perla Tedesco orcid.org/0000-0001-8962-9929 Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy Contribution: Conceptualization, ​Investigation, Methodology, Writing - original draft, SupervisionSearch for more papers by this authorDavid Baldo, David Baldo Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy Contribution: Methodology, ​Investigation, Writing - review & editing, SupervisionSearch for more papers by this authorRoberta Galuppi, Roberta Galuppi Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Bologna, Italy Contribution: Writing - review & editing, SupervisionSearch for more papers by this authorMarina Collina, Corresponding Author Marina Collina [email protected] Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy Correspondence Marina Collina, Department of Agricultural and Food Sciences (DISTAL), University of Bologna – Viale G. Fanin 42, Bologna 40127, Italy. Email: [email protected] Contribution: SupervisionSearch for more papers by this author First published: 24 January 2024 https://doi.org/10.1111/jfd.13925Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat CONFLICT OF INTEREST STATEMENT The authors declare no conflict of interest. Open Research DATA AVAILABILITY STATEMENT Data available on request from the authors. REFERENCES Albert, G., Curtze, J., & Drandarevski, C. A. (1988). Dimethomorph (CME 151), a novel curative fungicide. In Brighton crop protection conference (pp. 17–24). Thornton Heath. Google Scholar Alderman, D. J. (1982). In vitro testing of fisheries chemotherapeutants. Journal of Fish Diseases, 8, 289–298. 10.1111/j.1365-2761.1985.tb00945.x Web of Science®Google Scholar Alderman, D. J., & Polglase, J. L. (1986). Aphanomyces astaci: Isolation and culture. Journal of Fish Diseases, 9, 367–379. 10.1111/j.1365-2761.1986.tb01030.x Web of Science®Google Scholar Ali, E. H. (2009). Antifungal activity of sodium chloride on Saprolegnia diclina and Aphanomyces sp. Acta Mycologica, 44, 125–138. 10.5586/am.2009.011 Google Scholar Alves, E., Lucas, G. C., Pozza, E. A., & de Carvalho Alves, M. (2013). Scanning electron microscopy for fungal sample examination. In Laboratory protocols in fungal biology (pp. 133–150). Springer. 10.1007/978-1-4614-2356-0_8 Google Scholar Avetta, P., Marchett, I. G., Pazzi, M., De Laurentis, E., Maurino, V., Minero, C., & Vione, D. (2014). Phototransformation Pathways of the Fungicide Dimethomorph (E,Z) 4-[3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)-1-oxo-2-propenyl]morpholine, relevant to Sunlit surface waters. Science of the Total Environment, 1, 351–360. 10.1016/j.scitotenv.2014.08.067 Google Scholar Badillet, G., de Bièvre, C., & Guého, E. (1987). Champignons contaminants des cultures champignons opportunistes: Atlas clinique et biologique, Tome 1. Google Scholar Blum, M., Gamper, H. A., Waldner, M., Sierotzki, H., & Gisi, H. (2012). The cellulose synthase 3 (CesA3) gene of oomycetes: Structure, phylogeny and influence on sensitivity to carboxylic acid amide (CAA) fungicides. Fungal Biology, 116, 529–542. 10.1016/j.funbio.2012.02.003 CASPubMedWeb of Science®Google Scholar Cridge, H., Hughes, S. M., Langston, V. C., & Mackin, A. J. (2020). Mefenoxam, Itraconazole, and Terbinafine combination therapy for Management of Pythiosis in dogs (six cases). Journal of the American Animal Hospital Association, 56(6), 307. 10.5326/JAAHA-MS-7039 PubMedWeb of Science®Google Scholar Gaastra, W., Lipman, L. J., De Cock, A. W., Exel, T. K., Pegge, R. B., Scheurwate,r, J., Vilela, R., & Mendoza, L. (2010). Pythium insidiosum: An overview. Veterinary Microbiology, 146, 1–16. 10.1016/j.vetmic.2010.07.019 PubMedWeb of Science®Google Scholar Hummel, J., Grooters, A., Davidson, G., Jennings, S., Nicklas, J., & Birkenheuer, A. (2011). Successful management of gastrointestinal pythiosis in a dog using itraconazole, terbinafine, and mefenoxam. The Journal of Medical Mycology, 49, 539–542. CASPubMedWeb of Science®Google Scholar Kaminskyj, S. G., & Heath, I. B. (1992). Age-dependent differential responses of Saprolegnia hyphal tips to a helical growth-inducing factor in the agar substitute, gellan. Experimental Mycology, 16, 230–239. 10.1016/0147-5975(92)90031-L Web of Science®Google Scholar Martin, F. N., & Loper, J. E. (1999). Soilborne plant diseases caused by Pythium spp.: Ecology, epidemiology, and prospects for biological control. Critical Reviews in Plant Sciences, 18, 111–181. 10.1080/07352689991309216 CASPubMedWeb of Science®Google Scholar Muzzarelli, R. A., Muzzarelli, C., Tarsi, R., Miliani, M., Gabbanelli, F., & Cartolari, M. (2001). Fungistatic activity of modified Chitosans against Saprolegnia parasitica. Biomacromolecules, 2, 165–169. 10.1021/bm000091s CASPubMedWeb of Science®Google Scholar Nanni, I. M. (2016). Sensitivity studies of Plasmopara viticola to carboxylic acid amides: In vivo test and molecular studies of PvCesA3 gene. PhD dissertation. University of Bologna. Google Scholar Nanni, I. M., Pirondi, A., Mancini, D., Stammler, G., Gold, R., Ferri, I., Brunelli, A., & Collina, M. (2016). Differences in the efficacy of carboxylic acid amide fungicides against less sensitive strains of Plasmopara viticola. Pest Management Science, 72, 1537–1539. 10.1002/ps.4182 CASPubMedWeb of Science®Google Scholar Scott, W. W. (1964). Fungi associated with fish diseases. Development of Industrial Microbiology, 5, 109–123. Google Scholar Shah, K. L., Jha, B. C., & Jhingran, A. G. (1977). Observations on some aquatic phycomycetes pathogenic to eggs and fry of freshwater fish and prawn. Aquaculture, 12, 141–147. 10.1016/0044-8486(77)90181-8 Web of Science®Google Scholar Tedesco, P., Beraldo, P., Massimo, M., Fioravanti, M. L., Volpatti, D., Dirks, R., & Galuppi, R. (2020). Comparative therapeutic effects of natural compounds against Saprolegnia spp. (Oomycota) and Amyloodinium ocellatum (Dinophyceae). Frontiers in Veterinary Science, 7, 1–15. 10.3389/fvets.2020.00083 PubMedWeb of Science®Google Scholar Tedesco, P., Fioravanti, M. L., & Galuppi, R. (2019). In vitro activity of chemicals and commercial products against Saprolegnia parasitica and Saprolegnia delica strains. Journal of Fish Diseases, 42, 237–248. 10.1111/jfd.12923 CASPubMedWeb of Science®Google Scholar Van West, P. (2006). Saprolegnia parasitica, an oomycete pathogen with a fishy appetite: New challenges for an old problem. Mycologist, 20, 99–104. 10.1016/j.mycol.2006.06.004 Google Scholar White, A. G., Smart, K., Hathcock, T., Tillson, D. M., Poudel, A., Rynders, P., & Wang, C. (2020). Successful management of cutaneous paralagenidiosis in a dog treated with mefenoxam, minocycline, prednisone, and hyperbaric oxygen therapy. Medical Mycology, 29, 38–42. Web of Science®Google Scholar Early ViewOnline Version of Record before inclusion in an issuee13925 ReferencesRelatedInformation
更多
查看译文
关键词
fungicide,Pythium spp.,Saprolegnia parasitica,scanning electron microscopy protocol
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要