In situ analysis of nucleation reactions during TiCl4/H2O atomic layer deposition on SiO2 and H-terminated Si surfaces treated with a silane small molecule inhibitor

Journal of vacuum science & technology(2023)

引用 0|浏览4
暂无评分
摘要
Small-molecule inhibitors have recently been introduced for passivation during area-selective deposition (ASD). Small silanes like (N,N-dimethylamino)trimethylsilane (DMATMS) selectively react with −OH sites on SiO2 to form a less reactive –OSi(CH3)3 terminated surface. The –OSi(CH3)3 surface termination can inhibit many atomic layer deposition (ALD) processes, including TiCl4/H2O ALD. However, the mechanisms by which ALD is inhibited and by which selectivity is eventually lost are not well understood. This study uses in situ Fourier-transform infrared spectroscopy to probe the adsorption of DMATMS on SiO2 and the subsequent reactions when the passivated surface is exposed to TiCl4/H2O ALD. The chemisorption of DMATMS on isolated –OH groups on SiO2 is shown to inhibit the reaction with TiCl4. Further, we find that starting with an inherently inhibiting H-terminated Si surface, DMATMS can also react with residual –OH groups and reduce the extent of nucleation. Finally, using Rutherford backscattering spectrometry, the effectiveness of DMATMS passivation on SiO2 and H-terminated Si is quantified during extended ALD cycle numbers. The insight into the mechanisms of passivation by DMATMS and passivation loss can enable the rational design of highly selective ASD processes by carefully matching compatible surfaces, passivating agents, and ALD precursors.
更多
查看译文
关键词
situ</i> surfaces,atomic layer deposition,nucleation reactions,silane,h-terminated
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要