Proton radiation effects on electronic defect states in MOCVD-grown (010) β-Ga2O3

Journal of Applied Physics(2023)

引用 4|浏览3
暂无评分
摘要
The impact of 1.8 MeV proton irradiation on metalorganic chemical vapor deposition grown (010) β-Ga2O3 Schottky diodes is presented. It is found that after a 10.8×1013cm−2 proton fluence the Schottky barrier height of (1.40±0.05 eV) and the ideality factor of (1.05±0.05) are unaffected. Capacitance–voltage extracted net ionized doping curves indicate a carrier removal rate of 268±10cm−1. The defect states responsible for the observed carrier removal are studied through a combination of deep level transient and optical spectroscopies (DLTS/DLOS) as well as lighted capacitance–voltage (LCV) measurements. The dominating effect on the defect spectrum is due to the EC-2.0 eV defect state observed in DLOS and LCV. This state accounts for ∼75% of the total trap introduction rate and is the primary source of carrier removal from proton irradiation. Of the DLTS detected states, the EC-0.72 eV state dominated but had a comparably smaller contribution to the trap introduction. These two traps have previously been correlated with acceptor-like gallium vacancy-related defects. Several other trap states at EC-0.36, EC-0.63, and EC-1.09 eV were newly detected after proton irradiation, and two pre-existing states at EC-1.2 and EC-4.4 eV showed a slight increase in concentration after irradiation, together accounting for the remainder of trap introduction. However, a pre-existing trap at EC-0.40 eV was found to be insensitive to proton irradiation and, therefore, is likely of extrinsic origin. The comprehensive defect characterization of 1.8 MeV proton irradiation damage can aid the modeling and design for a range of radiation tolerant devices.
更多
查看译文
关键词
electronic defect states,radiation effects,proton,mocvd-grown
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要