Characterization and comparison of hypoxia inducing factors on tumor growth and metastasis between two- and three-dimensional cancer models

Leo Li-Ying Chan, Sarah L. Kessel, Bo Lin, Anna Juncker-Jensen, Paul Weingarten

SLAS DISCOVERY(2024)

引用 0|浏览1
暂无评分
摘要
The monocarboxylic acid transporter 4 (Mct-4), a downstream biomarker of hypoxia inducing factor (HIF)-1 alpha, is involved in the cellular response to hypoxia, as indicated by the hypoxic response element in its promoter region. Using a tumorsphere assay as an in vitro 3-dimensional (3D) model generated using 384-well ultralow attachment (ULA) plates for cell proliferation analysis using a plate-based image cytometer, we identify a hypoxic response in the tumorsphere model that is distinct from that of cells grown under 2-dimensional (2D) normoxic conditions and demonstrate a key role for Mct-4 in enabling 3D growth. The tumorsphere model yields evidence of an essential role for Mct-4 in multiple cell lines, which were genetically modified to underexpress and overexpress Mct-4, evidence not apparent in a standard 2D model of growth in the same cell lines. In addition, we identify the effects of overexpressing Mct-4 in cancer cell migration using a transwell chamber assay. We also show that the response to hypoxia may be circumvented by transfection with a CMV promoter driven Mct-4, which confers constitutive 3D growth, wherein tumorsphere growth inhibition by small molecule HIF-1 alpha inhibitors is mitigated. Finally, we demonstrate quantifiable gene/protein expression differences between 2D and 3D cancer models based on the normoxic and hypoxic conditions. Therefore, the tumorsphere 3D model generated using 384-well ULA plates in combination with high-throughput image cytometer is demonstrated to provide a convenient, robust, and reproducible tool and method for the elucidation of mechanisms of action underlying tumor growth and migration in the hypoxic tumor microenvironment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要