Metasediments from the lower crust reveal the history of the Picuris orogeny, southwest USA

GEOLOGICAL SOCIETY OF AMERICA BULLETIN(2024)

引用 0|浏览0
暂无评分
摘要
Petrologic and geochronologic data for metapelitic lower crustal xenoliths from New Mexico (USA) and Chihuahua (Mexico) states provide evidence for both a magmatic and collisional component to the enigmatic Mesoproterozoic Picuris orogeny. These garnet-sillimanite-bearing metapelites are found within the southern Rio Grande rift at Kilbourne Hole and Potrillo Maar in southern New Mexico and northern Chihuahua. Geothermobarometry and rutile with Quaternary U-Pb dates indicate equilibration in the local lower crust, which is actively undergoing ultra -high temperature (UHT) metamorphism (Cipar et al., 2020). The samples contain older detrital zircons dating back to the Paleoproterozoic, marking their deposition at the surface. Coupled zircon U-Pb dates and trace -element ratios (e.g., Gd/Yb) show a clear transition from oscillatoryzoned, low-Gd/Yb detrital magmatic zircon to featureless, high-Gd/Yb metamorphic zircon between 1500 and 1400 Ma, marking the transition from subduction to collision during this period. Metamorphic zircon and monazite grew in two major intervals. The first, between ca. 1450 and 1350 Ma, documents the journey of the sediments to depth within the orogen and provides evidence of extended Mesoproterozoic metamorphism in the region. The second corresponds with UHT metamorphism that commenced at ca. 32 Ma and is associated with the Rio Grande rift. Whereas nearly all garnets are homogeneous in both major and trace elements, a single garnet from one sample has a core defined by abundant quartz and acicular sillimanite inclusions. The core and rim of this garnet is homogeneous in major and most trace elements, but the rim is enriched in the slowest diffusing elements, Zr and Hf, which likely indicates rim growth at higher temperatures. We interpret the garnet core to have grown at the time of emplacement of the sediments into the lower crust. Because this occurred in the sillimanite stability field and because the metamorphic zircon and monazite all have negative Eu anomalies, indicating their equilibration with feldspar (stable at depths of <45 km), we conclude that the sediments were not emplaced via subduction and/or relamination of forearc sediments, but were instead metamorphosed under warmer, shallower conditions in an orogenic setting. Collectively, the data point to a collisional orogen during the inferred timing of the Picuris orogeny. These samples may therefore define the location of the Picuris suture zone, a key feature of this orogenic event.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要