Spatiotemporal Dynamics of Single-stranded DNA Intermediates inEscherichia coli

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览5
暂无评分
摘要
Abstract Single-stranded DNA gaps form within the E. coli chromosome during replication, repair and recombination. However, information about the extent of ssDNA creation in the genome is limited. To complement a recent whole-genome sequencing study revealing ssDNA gap genomic distribution, size, and frequency, we used fluorescence microscopy to monitor the spatiotemporal dynamics of single-stranded DNA within live E. coli cells. The ssDNA was marked by a functional fluorescent protein fusion of the SSB protein that replaces the wild type SSB. During log-phase growth the SSB fusion produces a mixture of punctate foci and diffuse fluorescence spread throughout the cytosol. Many foci are clustered. Fluorescent markers of DNA polymerase III frequently co-localize with SSB foci, often localizing to the outer edge of the large SSB features. Novel SSB-enriched features form and resolve regularly during normal growth. UV irradiation induces a rapid increase in SSB foci intensity and produces large features composed of multiple partially overlapping foci. The results provide a critical baseline for further exploration of ssDNA generation during DNA metabolism. Alterations in the patterns seen in a mutant lacking RecB function tentatively suggest associations of particular SSB features with the repair of double strand breaks and post-replication gaps.
更多
查看译文
关键词
dna intermediates,in<i>escherichia coli</i>,spatiotemporal dynamics,single-stranded
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要