Lipschitz Continuous Algorithms for Covering Problems

Soh Kumabe, Yasuhiko Yoshida

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
Combinatorial algorithms are widely used for decision-making and knowledge discovery, and it is important to ensure that their output remains stable even when subjected to small perturbations in the input. Failure to do so can lead to several problems, including costly decisions, reduced user trust, potential security concerns, and lack of replicability. Unfortunately, many fundamental combinatorial algorithms are vulnerable to small input perturbations. To address the impact of input perturbations on algorithms for weighted graph problems, Kumabe and Yoshida (FOCS'23) recently introduced the concept of Lipschitz continuity of algorithms. This work explores this approach and designs Lipschitz continuous algorithms for covering problems, such as the minimum vertex cover, set cover, and feedback vertex set problems. Our algorithm for the feedback vertex set problem is based on linear programming, and in the rounding process, we develop and use a technique called cycle sparsification, which may be of independent interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要