EPA: Easy Prompt Augmentation on Large Language Models via Multiple Sources and Multiple Targets

Hsu Feng Lu,Wai Lam

arXiv (Cornell University)(2023)

引用 0|浏览1
暂无评分
摘要
Large language models (LLMs) have shown promising performance on various NLP tasks via task prompting. And their performance can be further improved by appending task demonstrations to the head of the prompt. And usually, a better performance can be achieved with more demonstrations. However, asking the users to write the demonstrations can be cumbersome. As a simple yet cost-effective workaround, this paper proposes a novel method called EPA (\textbf{E}asy \textbf{P}rompt \textbf{A}ugmentation)\footnote{While this paper considers augmenting prompts via demonstrations, we name it EPA as the name EDA is already taken by a well-known NLP method \citep{wei-zou-2019-eda}.} that effectively minimizes user efforts in writing demonstrations while improving the model performance at the same time. EPA achieves these goals by automatically augmenting the demonstrations with multiple sources/targets, where each of them paraphrases each other. This is well motivated as augmenting data via paraphrasing effectively improves neural language models. EPA thus employs paraphrasing as an augmentation method for in-context learning. Extensive experiments indicate that EPA effectively improves both NLU and NLG tasks, covering from natural language inference to machine translation in translating tens of languages.\footnote{Code and data will be released upon publication.}
更多
查看译文
关键词
easy prompt augmentation,large language models,targets
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要