In vivo pilot study of tibiofemoral kinematics during loaded dynamic activities

L. A. Swain, Dionne Shillabeer, Hilary Wyatt,Ilse Jonkers, Catherine Avril Holt,David Williams

Orthopaedic Proceedings(2023)

引用 0|浏览0
暂无评分
摘要
Biplane video X-ray (BVX) – with models segmented from magnetic resonance imaging (MRI) – is used to directly track bones during dynamic activities. Investigating tibiofemoral kinematics helps to understand effects of disease, injury, and possible interventions. Develop a protocol and compare in-vivo kinematics during loaded dynamic activities using BVX and MRI. BVX (60 FPS) was captured whilst three healthy volunteers performed three repeats of lunge, stair ascent and gait. MRI scans were performed (Magnetom 3T Prisma, Siemens). 3D bone models of the tibia and femur were segmented (Simpleware Scan IP, Synopsis). Bone poses were obtained by manually matching bone models to X-rays (DSX Suite, C-Motion Inc.). Mean range of motion (ROM) of the contact points on the medial and lateral tibial plateau were calculated using custom MATLAB code (MathWorks). Results were filtered using an adaptive low pass Butterworth filter (Frequency range: 5-29Hz). Gait and Stair ascent activities from one participant's data showed increased ROM for medial-lateral (ML) translation in the medial compartment but decreased ROM in anterior-posterior (AP) translation when comparing against the same translations on the lateral compartment of the tibial plateau. Lunge activity showed increased ROM for both ML and AP translation in the medial compartment when compared with the lateral compartment. These results highlight the variability in condylar translations between different activities. Understanding healthy in-vivo kinematics across different activities allows the determination of suitable activities to best investigate the kinematic changes due to disease or injury and assess the efficacy of different interventions. Acknowledgements: This research was supported by the Engineering and Physical Sciences Research Council (EPSRC) doctoral training grant (EP/T517951/1).
更多
查看译文
关键词
tibiofemoral kinematics,loaded dynamic activities,vivo pilot study
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要