Tunable Hydrogel Confinement via On-Chip 3D Printing for Studying Cancer Cell Migration

Shuyi Qian,Yixiao Dong,Ju Qu,Xuechun Wang, Wang Zhang,Jia Chen, Fan Xu,Meihua Cui,Monica Giomo, Chenhan Liao,Manli Hu, Juan Xu, Ganlu Hu, Jie Zheng,Xianmin Zhu,Anna Urciuolo,Guoping Fan,Nicola Elvassore

ACS MATERIALS LETTERS(2023)

引用 0|浏览2
暂无评分
摘要
The physical confinement of the extracellular matrix (ECM) has been proven to be a coconspirator in cancer metastasis. However, current experimental models are limited in accurately dissecting the effect of mechanical and topographical properties on cancer cell migration in a confined three-dimensional (3D) environment. In this study, we propose a facile strategy to produce precisely controlled channel-like hydrogel confinements on a microfluidic device via a "hydrogel-in-hydrogel" two-photon 3D printing approach. Within this model, it is demonstrated that breast cancer cells migrate faster in the stiffer confinements with an adapted migratory phenotype, and the transcriptomic profile of the migrating cells shows that the activation of YAP is involved in this process. This platform allows the fabrication of high-resolution hydrogel microstructures, real-time observation of the cell-environmental interplay, and convenient collection of migrating cell samples for sequencing analyses, which provides a powerful tool for investigating cell migration and mechanical interactions within a confined microenvironment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要