Transcriptomic analysis reveals novel molecular signaling networks involved in low voluntary running behavior after AP-1 inhibition

Neuroscience(2023)

引用 0|浏览0
暂无评分
摘要
Understanding the neuro-molecular mechanisms that mediate the quantity of daily physical activity (PA) level is of medical significance, given the tremendous health benefits associated with greater physical activity. Here, we examined the effects of intra-nucleus accumbens (NAc) inhibition of activator protein-1 (AP-1), an important transcriptional factor downstream of cAMP response element binding protein (CREB; a reward-related transcriptional regulator), on voluntary wheel running behavior in wild-type (WT) and low voluntary running (LVR) female rats. Transcriptome analysis of the nucleus accumbens (NAc; a brain region critical for PA reward and motivation) was performed to further determine molecular responses to intra-NAc AP-1 inhibition in these rat lines. Within WT rats, intra-NAc AP-1 inhibition caused a significant decrease in overnight running distance in comparison to control rats (p = 0.009). Transcriptomic and bioinformatic analysis in WT rats identified involvement of gene products that regulate cellular proliferation and development, which were cellular processes regulated by AP-1. In contrast to above decreased WT distances, intra-NAc AP-1 inhibition in LVR rats increased nightly running distance in comparison to LVR control rats (p = 0.0008). Further analysis identified gene products that are associated with regulating intracellular Ca2+ homeostasis, calcium ion binding and neuronal excitability. In short, our study aims to gain a comprehensive understanding of transcriptional profile that was due to AP-1 inhibition in NAc, in which it could not only enhance the knowledge regarding molecular regulatory loops within NAc for modulating voluntary running behavior, but also provide further insights into molecular targets for future investigations.
更多
查看译文
关键词
low voluntary running behavior,novel molecular signaling networks,transcriptomic analysis,inhibition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要