Rosmarinic acid ameliorated oxidative stress, neuronal injuries, and mitochondrial dysfunctions mediated by polyglutamine and ɑ-synuclein in Caenorhabditis elegans models

Yun Chen, Ruina Xu, Qiaoxing Liu, Yanting Zeng, Weitian Chen, Yongfa Liu,Yong Cao, Guo Liu,Yunjiao Chen

Molecular Neurobiology(2024)

引用 0|浏览0
暂无评分
摘要
Numerous natural antioxidants have been developed into agents for neurodegenerative diseases (NDs) treatment. Rosmarinic acid (RA), an excellent antioxidant, exhibits neuroprotective activity, but its anti-NDs efficacy remains puzzling. Here, Caenorhabditis elegans models were employed to systematically reveal RA-mediated mechanisms in delaying NDs from diverse facets, including oxidative stress, the homeostasis of neural and protein, and mitochondrial disorders. Firstly, RA significantly inhibited reactive oxygen species accumulation, reduced peroxide malonaldehyde production, and strengthened the antioxidant defense system via increasing superoxide dismutase activity. Besides, RA reduced neuronal loss and ameliorated polyglutamine and ɑ-synuclein-mediated dyskinesia in NDs models. Further, in combination with the data and molecular docking results, RA may bind specifically to Huntington protein and ɑ-synuclein to prevent toxic protein aggregation and thus enhance proteostasis. Finally, RA ameliorated mitochondrial dysfunction including increasing adenosine triphosphate and mitochondrial membrane potential levels and rescuing mitochondrial membrane proteins’ expressions and mitochondrial structural abnormalities via regulating mitochondrial dynamics genes and improving the mitochondrial kinetic homeostasis. Thus, this study systematically revealed the RA-mediated neuroprotective mechanism and promoted RA as a promising nutritional intervention strategy to prevent NDs.
更多
查看译文
关键词
Rosmarinic acid,Oxidative stress,Neuron damages,Proteostasis network,Mitochondrial dysfunctions,Caenorhabditis elegans
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要