Temperature‐dependent adaptive conductivity coating for surface charge release and electric field control under electro‐thermal coupling field

High voltage(2023)

引用 2|浏览1
暂无评分
摘要
Abstract Surface charge accumulation is the potential criminal for surface insulation failure on spacers under direct current (DC) voltages. The existence of thermal gradient posing the difficulty of surface charge regulation. This study proposes a temperature‐dependent adaptive conductivity coating technique for surppressing surface charge accumulation under electro‐thermal coupling field. A two‐dimensional axis‐symmetrical simulation model regrading surface charge computation is established. The effects of thermal gradients and coating conductivity on surface charge and electric field distribution are investigated. The results show that the thermal gradient increases the bulk conductive current, therefore aggravating surface charge accumulation. The effects of the coating condcutivity on surface charge and electric field contains three stages. The lower coating conductivity leads to aggravated homo‐polarity charge accumulation. By increasing the coating conductivity, the surface charge and electric field are significantly suppressed at the obtained optimal conductivity, where the bulk and surface conductive current reach a balance stage. Continuously increasing the coating conductivity results in aggravated hetero‐polarity charges. Besides, the increase of thermal gradient to an appropriate extent contributes to the further suppression of surface charge on coated spacers. It is hoped that this study could provide some references for designing highly reliable DC GIL under electro‐thermal coupling field.
更多
查看译文
关键词
surface charge release,electric field control
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要