Electronic Structures and Charge Mobilities of Several Regioisomeric B2N2-Substituted Perylenediimides

Journal of Physical Chemistry A(2023)

引用 1|浏览0
暂无评分
摘要
Tunable and rich electronic properties of perylenediimide (PDI), an n-type semiconductor together with its synthetic ease and processibility, make it suitable for various optoelectronic and field-effect transistor applications. The electronic structures, spectroscopic properties, and charge mobilities for a few isoelectronic BN-substituted PDIs (B2N2-PDIs) with varied BN-patterning are studied using density functional theory (DFT) and time-dependent DFT employing optimally tuned range-separated hybrid. Two substitutional doping patterns, namely, BNNB and NBBN with zero dipole and also BNBN, the one with a finite dipole, are considered to explore the changes in the PDI properties due to different B2N2-substitutions. All three B2N2-PDIs are found to be dynamically stable and lie within a small energy window of ca. ∼1.7 kcal mol-1. An increased electronic gap due to charge localization produces a similar but slightly blue-shifted low-lying optical peak compared to the pristine PDI, in good agreement with the experimental observations. Additionally, differently considered BN patterns result in only slightly varied charge mobilities due to mainly differences in electronic couplings with larger electron mobilities found for the experimentally synthesized BNNB-PDI crystal. On the other hand, small reorganization energy and relatively large coupling for the hole transport produce greater hole mobilities for the NBBN-PDI. Varied nuclear reorganization and electronic coupling are understood by analyzing Huang-Rhys factors associated with normal modes and frontier molecular orbitals, respectively. These results serve as complementary to understanding the recently reported experimental findings and also provide new insights into the impact of different BN patterns on modulating the PDI electronic and charge-transport properties.
更多
查看译文
关键词
electronic structures,charge mobilities
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要