Effects of Prognostic Number Concentrations of Snow and Graupel on the Simulated Precipitation over the Korean Peninsula

WEATHER AND FORECASTING(2023)

引用 0|浏览2
暂无评分
摘要
A new version of the Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) micro-physics scheme was developed based on the existing WDM6 scheme by predicting snow and graupel number concentrations. The new WDM6 scheme was tested for summer rainfall and winter snowfall cases to evaluate the effects of prognostic number concentration of snow and graupel on the simulated precipitation. The number concentration of snow decreases at the upper layers and the one of graupel also decreases at all layers in the new WDM6 scheme compared to the diagnosed ones in the original WDM6 scheme. Rain number concentration is remarkably reduced in the new WDM6 scheme due to the newly added and modified sink processes. Therefore, the new scheme produces a larger size of raindrops with a reduced number concentration than the original scheme, which hinders raindrop evaporation and produces more surface rain. Even though the enhanced surface rainfall in the new scheme deteriorates the bias score, the new scheme im-proves the statistical skill of the equitable threat score and probability of detection in most cases. These scores all improved for warm-type summer cases in the new scheme. The new scheme also shows more comparable features to the observation for the probability density functions of simulated liquid equivalent precipitation rates by alleviating the overprediction problem of precipitation frequencies belonging to heavy precipitation categories. Therefore, the new scheme improves the precipitation forecast for warm-type summer cases, which occur most frequently during the summer season over the Korean Peninsula.
更多
查看译文
关键词
Cloud microphysics,Numerical weather prediction/forecasting,Cloud parameterizations,Parameterization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要