Ex vivotissue perturbations coupled to single cell RNA-seq reveal multi-lineage cell circuit dynamics in human lung fibrogenesis

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 2|浏览18
暂无评分
摘要
ABSTRACT Pulmonary fibrosis develops as a consequence of failed regeneration after injury. Analyzing mechanisms of regeneration and fibrogenesis directly in human tissue has been hampered by the lack of organotypic models and analytical techniques. In this work, we coupled ex vivo cytokine and drug perturbations of human precision-cut lung slices (hPCLS) with scRNAseq and induced a multi-lineage circuit of fibrogenic cell states in hPCLS, which we show to be highly similar to the in vivo cell circuit in a multi-cohort lung cell atlas from pulmonary fibrosis patients. Using micro-CT staged patient tissues, we characterized the appearance and interaction of myofibroblasts, an ectopic endothelial cell state and basaloid epithelial cells in the thickened alveolar septum of early-stage lung fibrosis. Induction of these states in the ex vivo hPCLS model provides evidence that the basaloid cell state was derived from alveolar type-2 cells, whereas the ectopic endothelial cell state emerged from capillary cell plasticity. Cell-cell communication routes in patients were largely conserved in the hPCLS model and anti-fibrotic drug treatments showed highly cell type specific effects. Our work provides an experimental framework for perturbational single cell genomics directly in human lung tissue that enables analysis of tissue homeostasis, regeneration and pathology. We further demonstrate that hPCLS offers novel avenues for scalable, high-resolution drug testing to accelerate anti-fibrotic drug development and translation.
更多
查看译文
关键词
human lung fibrogenesis,single cell,vivo</i>tissue perturbations,rna-seq,multi-lineage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要