Flavonols have opposite effects on the interrelated glucosinolate and camalexin biosynthetic pathways in Arabidopsis thaliana

Journal of Experimental Botany(2023)

引用 0|浏览4
暂无评分
摘要
Flavonols are structurally and functionally diverse biomolecules involved in plant biotic and abiotic stress tolerance, pollen development, and inhibition of auxin transport. Despite the ubiquitous nature and multifunctionality of flavonols in land plants, their effects on global gene expression and signaling pathways are unclear. To explore the roles of flavonol metabolites in signaling, we performed comparative transcriptome and targeted metabolite profiling of seedlings from the flavonol-deficient Arabidopsis (Arabidopsis thaliana) loss-of-function mutant flavonol synthase1 (fls1) with and without exogenous supplementation of flavonol derivatives (kaempferol, quercetin, and rutin). Our RNA-seq results indicated that flavanols modulate various biological and metabolic pathways, with significant alteration in camalexin and aliphatic glucosinolate synthesis. Flavonols negatively regulated camalexin biosynthesis but appeared to promote the accumulation of aliphatic glucosinolates via transcription factor-mediated upregulation of biosynthesis genes. Interestingly, upstream amino acid biosynthesis genes involved in methionine and tryptophan synthesis were altered under flavonol deficiency and exogenous supplementation. Quercetin treatment significantly upregulated aliphatic glucosinolate biosynthesis genes compared to kaempferol and rutin. In addition, expression and metabolite analysis of the transparent testa7 mutant, which lacks hydroxylated flavonol derivatives, clarified the role of quercetin in the glucosinolate biosynthesis pathway. This study elucidates the molecular mechanisms by which flavonols interfere with signaling pathways, their molecular targets, and the multiple biological activities of flavonols in plants.
更多
查看译文
关键词
camalexin biosynthetic pathways,<i>arabidopsis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要