Activity Classification of Grazing Cows on Desert Rangeland in the Southwestern United States

Andres Ricardo Perea, Lara Macon, Sajidur Rahman,Huiying Chen,Andrew Cox, Shelemia Nyamuryekung'e, Sara Campa Madrid,Huiping Cao,Andres Cibils, Rick Estell,Glenn C. Duff, Santiago Utsumi

JOURNAL OF ANIMAL SCIENCE(2023)

引用 0|浏览6
暂无评分
摘要
Abstract Monitoring cattle on rangelands is a daunting task that can be improved by using wearable sensors that are capable of transmitting motion and position data in real time and at low cost. This study tested the performance of machine learning (ML) classifiers to discriminate among foraging activities of cows based on triaxial accelerometer data collected in real-time by LoRa WAN networks. Trials were conducted at the New Mexico State University Chihuahuan Desert Rangeland Research Center and the USDA Jornada Experimental Range in Doña Ana County, NM. A total of 24 Brangus, Brahman, Raramuri Criollo and Angus x Hereford mature cows fitted with LoRa WAN tracking collars housing GPS and triaxial accelerometers were monitored across four periods during the 2022 summer and fall seasons on desert rangeland pastures. Trackers integrated and transmitted activity count (Ac) data from accelerometers at one-minute intervals. Video recording of focal cows (n = 24) was undertaken during daylight hours (0630 to 2000 h) from a distance of ~30 m to minimize interference with natural behaviors. A total of 168 hours of video were recorded and inspected by an experienced observer to label video files according to a classification tree of four main activities: grazing (GR), walking (WA), resting (RE) and ruminating (RU), and two states: active (AC) or static (ST). Individualized activities and states were considered when cows performed the same predefined activity or state for more than 30 secs. Retrieved sensor data from collar trackers were labeled by state and activity according to labels collected from video records. This classification resulted in a dataset containing 9,222 events, including 3,928 for GR, 2,286 for WA, 2,032 for RE, and 976 for RU, as well as 6,214 labels for AC and 3,008 labels for ST. Deep learning through Multilayer Perceptron Classifiers (MLPC) were coded and implemented using a split configuration of 70% of the data for training and 30% for testing, respectively. In preliminary runs, models had reduced ability to properly discriminate among RE (F1 = 0.42) and RU (F1 = 0.43) Thus, RE and RU were merged on subsequent tests, resulting in 3,928 labels for GR, 2,286 labels for WA, and 3,008 labels for merged RE. Deep learning models successfully classified between AC vs. ST behavior with an overall F1 performance score of 0.96. Further use of the same deep learning models successfully classified among GR, WA, and RE activities with an overall F1 performance score of 0.91, suggesting satisfactory application of the trained models to monitor cattle grazing activities on desert rangeland.
更多
查看译文
关键词
accelerometer,animal monitoring,deep learning,machine learning,rangeland cattle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要