Tensor Networks Meet Neural Networks: A Survey and Future Perspectives

arXiv (Cornell University)(2023)

Cited 0|Views10
No score
Abstract
Tensor networks (TNs) and neural networks (NNs) are two fundamental data modeling approaches. TNs were introduced to solve the curse of dimensionality in large-scale tensors by converting an exponential number of dimensions to polynomial complexity. As a result, they have attracted significant attention in the fields of quantum physics and machine learning. Meanwhile, NNs have displayed exceptional performance in various applications, e.g., computer vision, natural language processing, and robotics research. Interestingly, although these two types of networks originate from different observations, they are inherently linked through the common multilinearity structure underlying both TNs and NNs, thereby motivating a significant number of intellectual developments regarding combinations of TNs and NNs. In this paper, we refer to these combinations as tensorial neural networks (TNNs), and present an introduction to TNNs in three primary aspects: network compression, information fusion, and quantum circuit simulation. Furthermore, this survey also explores methods for improving TNNs, examines flexible toolboxes for implementing TNNs, and documents TNN development while highlighting potential future directions. To the best of our knowledge, this is the first comprehensive survey that bridges the connections among NNs, TNs, and quantum circuits. We provide a curated list of TNNs at \url{https://github.com/tnbar/awesome-tensorial-neural-networks}.
More
Translated text
Key words
neural networks
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined