Effect of W Content on Microstructure and Properties of Laser Cladding CoCrFeNi HEA Coating

Fangyan Luo, Tuchuan Yang,Yang Zhao,Zhengye Xiong,Jiang Huang

COATINGS(2023)

引用 2|浏览2
暂无评分
摘要
The 316L SS surfaces were prepared with CoCrFeNi HEA/W-composite coatings using the laser cladding technique with various mass fractions of W. The mass fractions of W were 10, 20, 30, and 40%. The microstructure of the HEA/W-composite coatings was investigated using a variety of characterization methods. According to the results, the samples were in the BBC phase. In the SEM images, a solid-liquid bonding layer was observed, which indicates the samples had good metallurgical bonding. The W particles prevented the orderly growth of the HEA grains, and a significant refinement of the grains around the W particles occurred. The lattice constants measured by XRD mapping indicate that adding W particles to CoCrFeNi HEA leads to lattice distortion. The hardness of the HEA/W coatings was substantially higher than the substrate and the pure CoCrFeNi coating by hardness measurements and was greatest at a W content of 40%. The hardness of the HEA/W coatings was significantly increased compared to the substrate and the pure CoCrFeNi coating by hardness measurements and was greatest at a W content of 40%. The HEA/W coating was tested for electrochemical corrosion, and a 10% mass fraction of W achieved the highest level of corrosion resistance.
更多
查看译文
关键词
laser cladding,microstructure,HEA,microhardness,corrosion resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要