X-ray Reflection from the Plunging Region of Black Hole Accretion Disks

arxiv(2023)

引用 0|浏览3
暂无评分
摘要
Accretion around black holes is very often characterized by distinctive X-ray reflection features (mostly, iron inner-shell transitions), which arise due to the primary radiation being reprocessed by a dense and relatively colder medium, such as an accretion disk. Most reflection modeling assume that emission stops at the inner-most stable circular orbit (ISCO), and that for smaller radii - in the plunging region - the density drops and the accretion flow is far too ionized for efficient line production. We investigate the spectral features of the reflection in the plunging regions of optically-thick and geometrically-thin accretion disks around black holes. We show that for cases in which the density profile is considered constant (as expected in highly magnetized flows), or in cases in which the disk density is high enough such that the ionization still allows line formation within the ISCO, there is a significant modification of the observed reflected spectrum. Consistent with previous studies, we found that the impact of the radiation reprocessed in the plunging region is stronger the lower the black hole spin, when the plunging region subtends a larger area. Likewise, as for the case of standard reflection modeling, the relativistic broadening of the iron line is more pronounced at low inclination, whereas the blueshift and relativistic beaming effect is dominant at high inclination. We also tested the effects of various prescriptions of the stress at the ISCO radius on the reflection spectrum, and found that several of these cases appear to show line profiles distinct enough to be distinguishable with reasonably good quality observational data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要