Long-range action of an HDAC inhibitor treats chronic pain in a spared nerve injury rat model.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览0
暂无评分
摘要
Histone deacetylase inhibitors (HDACi) that modulate epigenetic regulation and are approved for treating rare cancers have, in disease models, also been shown to mitigate neurological conditions, including chronic pain. They are of interest as non-opioid treatments, but achieving long-term efficacy with limited dosing has remained elusive. Here we utilize a triple combination formulation (TCF) comprised of a pan-HDACi vorinostat (Vo at its FDA-approved daily dose of 50mg/Kg), the caging agent 2-hydroxypropyl-β-cyclodextrin (HPBCD) and polyethylene glycol (PEG) known to boost plasma and brain exposure and efficacy of Vo in mice and rats, of various ages, spared nerve injury (SNI) model of chronic neuropathic pain. Administration of the TCF (but not HPBCD and PEG) decreased mechanical allodynia for 4 weeks without antagonizing weight, anxiety, or mobility. This was achieved at less than 1% of the total dose of Vo approved for 4 weeks of tumor treatment and associated with decreased levels of major inflammatory markers and microglia in ipsilateral (but not contralateral) spinal cord regions. A single TCF injection was sufficient for 3-4 weeks of efficacy: this was mirrored in repeat injections, specific for the injured paw and not seen on sham treatment. Pharmacodynamics in an SNI mouse model suggested pain relief was sustained for days to weeks after Vo elimination. Doubling Vo in a single TCF injection proved effectiveness was limited to male rats, where the response amplitude tripled and remained effective for > 2 months, an efficacy that outperforms all currently available chronic pain pharmacotherapies. Together, these data suggest that through pharmacological modulation of Vo, the TCF enables single-dose effectiveness with extended action, reduces long-term HDACi dosage, and presents excellent potential to develop as a non-opioid treatment option for chronic pain.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要