β-1,3-d-glucan particles-based “nest” protected co-loaded Rhein and Emodin regulates microbiota and intestinal immunity for ulcerative colitis treatment

International Journal of Biological Macromolecules(2024)

引用 0|浏览8
暂无评分
摘要
Herein, a β-1,3-D-glucan based yeast cell wall loaded with co-loaded nanoparticles of Rhein (RH) and Emodin (EMO), was developed for the combined treatment of ulcerative colitis (UC) by modulating gut microbiota and the Th17/Treg cell balance. This was achieved through an oral “nano-in-micro” advanced drug delivery system. Specifically, RH was grafted onto the HA chain via disulfide bonds to synthesize a reduction-sensitive carrier material and then used to encapsulate EMO to form nanoparticles with a specific drug ratio (denoted as HA-RH/EMO NPs). As anticipated, HA-RH/EMO NPs were encased within the “nests”-yeast cell wall microparticles (YPs), efficiently reach the colon and then released gradually, this occurs mainly due to the degradation of β-1,3-D-glucan by β-glucanase. Additionally, HA-RH/EMO NPs demonstrated a significant reduction-sensitive effect in GSH stimulation evaluations and a remarkable ability to target macrophages in in vitro cell uptake studies. Notably, HA-RH/EMO NYPs reduced inflammatory responses by inhibiting the PI3K/Akt signaling pathway. Even more crucially, the oral delivery and drug combination methods significantly enhanced the regulatory effects of HA-RH/EMO NYPs on gut microbiota and the Th17/Treg balance. Overall, this research marks the first use of YPs to encapsulate two components, RH and EMO, presenting a promising therapeutic strategy for UC.
更多
查看译文
关键词
Yeast cell wall microparticles co-loaded Rhein and Emodin,Macrophage targeting,Ulcerative colitis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要