Insight into acoustic wave-driven gas bubble dynamics in Williamson's fluid

JOURNAL OF MOLECULAR LIQUIDS(2024)

引用 0|浏览0
暂无评分
摘要
This study's motivation on the behavior of a gas bubble and surrounding fluid during the collapse phase of an acoustic wave leads to the emission of light, which can be modelled using the Rayleigh-Plesset equation. The significant contribution to the major addition to the understanding of gas bubble dynamics in viscoelastic fluids. The results of the study have the potential to impact a wide range of applications, from sonar and underwater acoustic propagation to biomedical applications and industrial operations. Understanding the dynamics of acoustic wave-driven gas bubble oscillations in non-Newtonian fluids is crucial for various applications in medical imaging, therapy, and microfluidics. The aim of this study is to discover the conditions under which these bubbles can undergo sonoluminescence, the emission of light due to the collapse of bubbles under severe sonic pressure. The complex ordinary differential equation is solved numerically, and graphs are generated to evaluates various parameters such as velocity, radius, and pressure. A comparison with the viscous case is also presented to assess the influence of Newtonian and non-Newtonian fluids. A program designed by Mathematica software (13.0) "parametric NDSolve package" is used to solve the equations. The numerical solution supports the boundary conditions, indicating stability and reliability. Notably, the study identifies distinct fluctuations in the phase and stable characteristics associated with non-Newtonian effects. Interestingly, certain fluid parameters lead to discrete group modulation of radial excursions, revealing a novel and previously unknown phenomenon. It is concluded that Higher Reynolds numbers result in turbulent flow, which causes the bubble to enlarge and increase its volume. Furthermore the pressure gradient is affected by magnetic drag force, and as size of bubble increases, required pressure gradient to counteract the drag force also increases. As the magnetic field intensity increases, the velocity of the bubble decreases. Also, considering the implications of these results, the study explores their relevance to medical ultrasonography applications.
更多
查看译文
关键词
Bubble dynamics,Williamson ' s fluid model,Electrically transmissive,Acoustic waves,Computational exploration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要