Analytical modeling of the sensitivity of cylindrical PET systems based on bulk materials and metascintillators

D. A.B. Bonifacio, R. Latella, H. M. Murata,A. J. Gonzalez, P. Lecoq,G. Konstantinou

2023 IEEE Nuclear Science Symposium, Medical Imaging Conference and International Symposium on Room-Temperature Semiconductor Detectors (NSS MIC RTSD)(2023)

引用 0|浏览0
暂无评分
摘要
Positron emission tomography scanners are commonly characterized by their photon sensitivity. Scanner design often requires Monte Carlo simulations to probe different geometries and materials. However, the computational load of such simulations can be significant and costly. Furthermore, the applicability of the Monte Carlo approach in optimization loops is limited as each instance, such as source position or scanner dimensions, has to be simulated independently. In this work, Monte Carlo results have been accurately replicated by an analytical model that uses characteristics of the foreseen cylindrical scanner and returns the sensitivity profile following NEMA guidelines. BGO and LYSO bulk materials and several metascintillator scenarios have been used. The mean absolute error (MAE), mean absolute percentage error (MAPE) and standard deviation of the error (SDE) are as low as 0.49%, 2.22% and 0.26% when no energy window is used, respectively. With an energy window applied, the analytical model presents the lowest values of MAE and SDE, with MAPE value being 8.19%. A normalization factor has been used to compensate for the scattered events included in the 350-650 keV window. This work facilitates significantly the development of cylindrical scanners, allowing direct probing of their axial sensitivity profiles.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要