Exploring the Impact of Al2O3 Additives in Gasoline on HCCI-DI Engine Performance: An Experimental, Neural Network, and Regression Analysis Approach

Lionus Leo George Mary,Subramanian Manivel,Shalini Garg, Vinoth Babu Nagam, Komal Garse, Ranjit Mali,T. M. Yunus Khan,Rahmath Ulla Baig

ACS Omega(2023)

引用 0|浏览1
暂无评分
摘要
This study delves into the influence of incorporating alumina (Al2O3) nanoparticles with waste cooking oil (WCO) biofuels in a gasoline engine that employs premixed fuel. During the suction phase, gasoline blends with atmospheric air homogeneously at the location of the inlet manifold. The biodiesel, enhanced with Al2O3 nanoparticles and derived from WCO, is subsequently directly infused into the combustion chamber at 23 degrees before the top dead center. The results highlight that when gasoline operates in the homogeneous charge compression ignition with direct injection (HCCI-DI) mode, there is a notable enhancement in thermal efficiency by 4.23% in comparison to standard diesel combustion. Incorporating the Al2O3 nanoparticles with the WCO biodiesel contributes to an extra rise of 6.76% in thermal efficiency. Additionally, HCCI-DI combustion paves the way for a reduction in nitrogen oxides and smoke emissions, whereas biodiesel laced with Al2O3 nanoparticles notably reduces hydrocarbon and carbon monoxide discharges. Predictive tools such as artificial neural networks and regression modeling were employed to forecast engine performance variables.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要