GdAlSi: An antiferromagnetic topological Weyl semimetal with non-relativistic spin splitting

Jadupati Nag, Bishal Das, Sayantika Bhowal, Yukimi Nishioka, Barnabha Bandyopadhyay,Shiv Kumar,Kenta Kuroda,Akio Kimura,K. G. Suresh,Aftab Alam

arxiv(2023)

引用 0|浏览7
暂无评分
摘要
Spintronics has emerged as a viable alternative to traditional electronics based technologies in the past few decades. While on one hand, the discovery of topological phases of matter with protected spin-polarized states has opened up exciting prospects, recent revelation of intriguing non-relativistic spin splitting in collinear antiferromagnetic materials with unique symmetries facilitate a wide possibility of realizing both these features simultaneously. In this work, we report the co-existence of these two intriguing properties within a single material: GdAlSi. It crystallizes in a body-centered tetragonal structure with a non-centrosymmetric space group $I4_{1}md$ ($109$). The magnetization data indicates antiferromagnetic ordering with an ordering temperature ($T_N$) 32 K. Ab-initio calculations reveal GdAlSi to be a collinear antiferromagnetic Weyl semimetal with an unconventional, momentum-dependent spin splitting, also referred to as altermagnet. Angle-resolved photoemission spectroscopy measurements on GdAlSi single crystals subsequently confirm the presence of Fermi arcs, a distinctive hallmark of Weyl semimetals. Electric and magnetic multipole analysis provides a deeper understanding of the symmetry-mediated, momentum-dependent spin splitting, which has strictly non-relativistic origin. To the best of our knowledge, such co-existence of unconventional antiferromagnetic order and non-trivial topology is unprecedented and has never been observed before in a single material, rendering GdAlSi a special and promising candidate material. We propose a device harnessing these features, poised to enable practical and efficient topotronic applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要