ROSE: A reduced-order scattering emulator for optical models

Daniel Odell,Pablo Giuliani,Kyle Beyer, Manuel Catacora-Rios, Moses Y. -H. Chan,Edgard Bonilla,Richard J. Furnstahl,Kyle Godbey,Filomena M. Nunes

Physical Review C(2023)

引用 0|浏览0
暂无评分
摘要
A new generation of phenomenological optical potentials requires robust calibration and uncertainty quantification, motivating the use of Bayesian statistical methods. These Bayesian methods usually require calculating observables for thousands or even millions of parameter sets, making fast and accurate emulators highly desirable or even essential. Emulating scattering across different energies or with interactions such as optical potentials is challenging because of the non-affine parameter dependence, meaning the parameters do not all factorize from individual operators. Here we introduce and demonstrate the Reduced Order Scattering Emulator (ROSE) framework, a reduced basis emulator that can handle non-affine problems. ROSE is fully extensible and works within the publicly available BAND Framework software suite for calibration, model mixing, and experimental design. As a demonstration problem, we use ROSE to calibrate a realistic nucleon-target scattering model through the calculation of elastic cross sections. This problem shows the practical value of the ROSE framework for Bayesian uncertainty quantification with controlled trade-offs between emulator speed and accuracy as compared to high-fidelity solvers. Planned extensions of ROSE are discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要