Emergent ultrasmall multiferroics in paraelectric perovskite oxide by hole polarons

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2024)

引用 0|浏览3
暂无评分
摘要
Ultimately small multiferroics with coupled ferroelectric and ferromagnetic order parameters have drawn considerable attention for their tremendous technological potential. Nevertheless, these ferroic orders inevitably disappear below the critical size of several nanometers in conventional ferroelectrics or multiferroics. Here, based on first-principles calculations, we propose a new strategy to overcome this limitation and create ultrasmall multiferroic elements in otherwise nonferroelectric CaTiO3 by engineering the interplay of oxygen octahedral rotations and hole polarons, though both of them are generally believed to be detrimental to ferroelectricity. It is found that the hole doped in CaTiO3 spontaneously forms a localized polaronic state. The lattice distortions associated with a hole polaron interacting with the intrinsic oxygen octahedral rotations in CaTiO3 effectively break the inversion symmetry and create atomic-scale ferroelectricity beyond the critical size limitation. The hole polaron also causes highly localized magnetism attributed to the associated spin-polarized electric state and thus manifests as a multiferroic polaron. Moreover, the hole polaron exhibits high hopping mobility accompanied by rich switching of polarization and magnetic directions, indicating strong magnetoelectric coupling with a mechanism dissimilar from that of conventional multiferroics. The present work provides a new mechanism to engineer inversion symmetry and opens avenues for designing unusual multifunctional materials. Atomic-scale multiferroic elements with high mobility in nonmagnetic paraelectric CaTiO3via the interaction of oxygen octahedral rotation and hole polarons.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要