Role of Curvature in Stabilizing Boron-Doped Nanocorrugated Graphene

ACS applied materials & interfaces(2023)

引用 0|浏览1
暂无评分
摘要
Boron-doped carbon nanostructures have attracted great interest recently because of their remarkable electrocatalytic performance comparable to or better than that of conventional metal catalysts. In a previous work (Carbon 123, 605 (2017)), we reported that along with significant performance improvement, B doping enhances the oxidation resistance of few-layer graphene (FLG) that provides increased structural stability for intermediate-temperature fuel-cell electrodes. In general, detailed characterization of the atomic and electronic structure transformations that occur in B-doped carbon nanostructures during fuel-cell operation is lacking. In this work, we use aberration-corrected scanning transmission electron microscopy, nanobeam electron diffraction, and electron energy-loss spectroscopy (EELS) to characterize the atomic and electronic structures of B-doped FLG before and after fuel-cell operation. These data point to the nanoscale corrugation of B-doped FLGs as the key factor responsible for increased stability and high corrosion resistance. The similarity of the 1s to pi* and sigma* transition features in the B K-edge EELS to those in B-doped carbon nanotubes provides an estimate for the curvature of nanocorrugation in B-FLG.
更多
查看译文
关键词
nanocorrugated graphene,B doping,curvature,STEM,EELS,NBED,carbocatalysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要