Synergistic Chemoimmunotherapy Augmentation via Sequential Nanocomposite Hydrogel-Mediated Reprogramming of Cancer-Associated Fibroblasts in Osteosarcoma.

Hui Wang,Yu Chen,Ran Wei, Jinlong Zhang,Jiahui Zhu,Wenbin Wang, Zhenfei Wang, Zulpikar Wupur,Yujing Li,Huan Meng

Advanced materials (Deerfield Beach, Fla.)(2023)

引用 2|浏览7
暂无评分
摘要
In osteosarcoma, immunotherapy often faces hurdles posed by cancer-associated fibroblasts (CAFs) that secrete dense extracellular matrix components and cytokines. Directly removing CAFs may prove ineffective and even promote tumor metastasis. To address this challenge, a sequential nanocomposite hydrogel that reshapes CAF behavior is developed, enhancing tumor-infiltrating T-cells in osteosarcoma. The approach utilizes an injectable blend of carboxymethyl chitosan and tetrabasic polyethylene glycol, forming a hydrogel for controlled release of a potent CAF suppressor (Nox4 inhibitor, Nox4i) and liposomal Doxorubicin (L-Dox) to induce immunogenic cell death (ICD) upon in situ administration. Nox4i effectively counters CAF activation, overcoming T-cell exclusion mechanisms, followed by programmed L-Dox release for ICD induction in stroma-rich osteosarcoma models. Combining the co-delivery gel with αPD-1 checkpoint inhibitor further enhances its effectiveness in an orthotopic osteosarcoma model. Immunophenotyping data underscore a significant boost in tumor T-cell infiltration and favorable anti-tumor immunity at the whole-animal level.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要