Ecotoxicity effect of aspirin on the larvae of Musca domestica through retinol metabolism

ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY(2024)

引用 0|浏览16
暂无评分
摘要
Aspirin is a widely used multi-efficiency pharmaceutical, and its environmental residues are frequently detected. However, limited information is available on its effects on the development of the public health pest and saprophytic insect Musca domestica. In this study, it was demonstrated that aspirin inhibits the larval growth of house flies in a concentration-dependent manner. Microbiome analysis indicated that the composition of larval intestinal bacteria was influenced by aspirin but not greatly. The dominant bacterial genus in the aspirin group was still Klebsiella, as in the control group. Transcriptome sequencing and gene set enrichment analysis showed that retinol metabolism was activated after aspirin treatment. High performance liquid chromatography indicated that the content of retinol in larvae was decreased and that of retinoic acid was increased. The addition of beta-carotene, a precursor substance of retinol, in feeding promotes larval development and alleviates the inhibitory effect caused by aspirin. In contrast, retinoic acid delayed the larval development of house flies as well as aspirin. Gene expression analysis after aspirin exposure demonstrated that genes involved in the transformation from retinol to retinoic acid were upregulated. Overall, aspirin exposure impairs larval development by activating retinol metabolism in house flies and can be utilized as an effective pesticide. This work uncovers the mechanism underlying the larval development inhibition induced by aspirin in terms of metabolism and genetics, and provides novel functional exploration of a traditional drug for pest management.
更多
查看译文
关键词
Aspirin,Saprophytic insects,Toxic effect,Molecular mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要