Quasi-Probabilistic Readout Correction of Mid-Circuit Measurements for Adaptive Feedback via Measurement Randomized Compiling

Akel Hashim,Arnaud Carignan-Dugas,Larry Chen, Christian Juenger, Neelay Fruitwala,Yilun Xu,Gang Huang, Joel J. Wallman,Irfan Siddiqi

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
Quantum measurements are a fundamental component of quantum computing. However, on modern-day quantum computers, measurements can be more error prone than quantum gates, and are susceptible to non-unital errors as well as non-local correlations due to measurement crosstalk. While readout errors can be mitigated in post-processing, it is inefficient in the number of qubits due to a combinatorially-large number of possible states that need to be characterized. In this work, we show that measurement errors can be tailored into a simple stochastic error model using randomized compiling, enabling the efficient mitigation of readout errors via quasi-probability distributions reconstructed from the measurement of a single preparation state in an exponentially large confusion matrix. We demonstrate the scalability and power of this approach by correcting readout errors without the need for any matrix inversion on a large number of different preparation states applied to a register of a eight superconducting transmon qubits. Moreover, we show that this method can be extended to measurement in the single-shot limit using quasi-probabilistic error cancellation, and demonstrate the correction of mid-circuit measurement errors on an ancilla qubit used to detect and actively correct bit-flip errors on an entangled memory qubit. Our approach paves the way for performing an assumption-free correction of readout errors on large numbers of qubits, and offers a strategy for correcting readout errors in adaptive circuits in which the results of mid-circuit measurements are used to perform conditional operations on non-local qubits in real time.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要