Thalamo-Cortical Interaction for Incremental Binding in Mental Contour-Tracing

biorxiv(2023)

引用 0|浏览9
暂无评分
摘要
Visual object-based attention marks a key process of mammalian perception. By which mechanisms this process is implemented and how it can be interacted with by means of attentional control is not completely understood yet. Incremental binding is a mechanism required in more demanding scenarios of object-based attention and is likewise experimentally investigated quite well. Attention spreads across a representation of the visual object and labels bound elements by constant up-modulation of neural activity. The speed of incremental binding was found to be dependent on the spatial arrangement of distracting elements in the scene and to be scale invariant giving rise to the growth-cone hypothesis. In this work, we propose a neural dynamical model of incremental binding that provides a mechanistic account for these findings. Through simulations, we investigate the model properties and demonstrate how an attentional spreading mechanism tags neurons that participate in the object binding process. They utilize Gestalt properties and eventually show growth-cone characteristics labeling perceptual items by delayed activity enhancement of neuronal firing rates. We discuss the algorithmic process underlying incremental binding and relate it to the model's computation. This theoretical investigation encompasses complexity considerations and finds the model to be not only of explanatory value in terms of neurohpysiological evidence, but also to be an efficient implementation of incremental binding striving to establish a normative account. By relating the connectivity motifs of the model to neuroanatomical evidence, we suggest thalamo-cortical interactions to be a likely candidate for the flexible and efficient realization suggested by the model. There, pyramidal cells are proposed to serve as the processors of incremental grouping information. Local bottom-up evidence about stimulus features is integrated via basal dendritic sites. It is combined with an apical signal consisting of contextual grouping information which is gated by attentional task-relevance selection mediated via higher-order thalamic representations. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要