The SLC38A9-mTOR axis is involved in autophagy in the juvenile yellow catfish (Pelteobagrus fulvidraco) under ammonia stress

ENVIRONMENTAL POLLUTION(2024)

引用 0|浏览2
暂无评分
摘要
The primary objective of this study was to examine the effect of acute ammonia stress on hepatic physiological alterations in yellow catfish by performing a comprehensive analysis of the metabolome and transcriptome. The present study showed that ammonia stress led to liver metabolic disruption, functional incapacitation, and oxidative damage. Transcriptomic and metabolomic analyses revealed transcriptional and metabolic differences in the liver of yellow catfish under control and high ammonia stress conditions. After 96 h of acute exposure to ammonia, the mRNA levels of 596 liver genes were upregulated, whereas those of 603 genes were down-regulated. Enrichment analysis of the differentially expressed genes identified multiple signalling pathways associated with autophagy, including the endocytosis, autophagy-animal, and mammalian target of rapamycin signalling pathways. A total of 186 upregulated and 117 downregulated metabolites, primarily associated with amino acid biosynthesis pathways, were identified. Multi-omics integration revealed the solute carrier family 38 member 9 (SLC38A9)-mammalian target of rapamycin axis as a signalling nexus for amino acid-mediated modulation of autophagy flux, and q-PCR was used to assess the expression of autophagy-related genes (LC3a and sqstm1), revealing an initial inhibition followed by the restoration of autophagic flux during ammonia stress. Subsequent utilisation of arginine as a specific SLC38A9 activator during ammonia stress demonstrated that augmented SLC38A9 expression hindered autophagy, exacerbated ammonia toxicity, and caused a physiological decline (total cholesterol, total triglyceride, acid phosphatase, alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase levels were significantly increased), oxidative stress, and apoptosis. Autophagy activation may be an adaptive mechanism to resist ammonia stress.
更多
查看译文
关键词
Ammonia stress,mTOR,Autophagy,Amino acids,Ammonia tolerance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要