Synergistic reduction on PM and NO source emissions during preheating-combustion of pulverized coal

FUEL(2024)

引用 0|浏览2
暂无评分
摘要
The present research focuses on the synergistic source control of particulate matter (PM) and NOx formation from pulverized coal combustion. Comparative experiments of preheating-combustion and conventional combustion were conducted in a lab-scale high-temperature preheating-combustion furnace, and PM10 and NO were measured by an electrical low pressure impactor and a flue gas analyzer, respectively. The results of the experiment indicate that preheating-combustion has a significant reduction in PM10 (especially PM0.3 up to 37.51 %) and NO, which can achieve the synergistic control of PM10 and NO source emissions during the combustion process. The fragmentation in preheating-combustion was weaker compared to the conventional combustion. Meanwhile, the relatively weak preheating-combustion coal char oxidation reaction leads to a decrease in ultrafine mode PM yielded due to the inhibition on vaporization of mineral inclusions. The PM0.3/ PM1 mass ratio of the preheating-combustion has a decreasing trend, implying an elevated yield of PM0.3-1 and a shift of the average PM1 particle size toward a larger particle size. Higher preheating temperature (Tp) presented the potential to further reduce NO formation, and the NO reduction efficiency increased from 46.59 % to 56.60 % when the Tp was increased from 1200 K to 1600 K. All our preliminary results throw light on the nature of synergistic source control of preheating-combustion PM and NO formation.
更多
查看译文
关键词
Preheating-combustion,NO,Particulate matters,Minerals,Char
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要