谷歌浏览器插件
订阅小程序
在清言上使用

COVID-19 Prediction Using Caviar Squirrel Jellyfish Search Optimization Technique in Fog-Cloud Based Architecture.

Shanthi Amgothu,Srinivas Koppu

PloS one(2023)

引用 0|浏览0
暂无评分
摘要
In the pandemic of COVID-19 patients approach to the hospital for prescription, yet due to extreme line up the patient gets treatment after waiting for more than one hour. Generally, wearable devices directly measure the preliminary data of the patient stored in capturing mode. In order to store the data, the hospitals require large storage devices that make the progression of data more complex. To bridge this gap, a potent scheme is established for COVID-19 prediction based fog-cloud named Caviar Squirrel Jellyfish Search Optimization (CSJSO). Here, CSJSO is the amalgamation of CAViar Squirrel Search Algorithm (CSSA) and Jellyfish Search Optimization (JSO), where CSSA is blended by the Conditional Autoregressive Value-at-Risk (CAViar) and Squirrel Search Algorithm (SSA). This architecture comprises the healthcare IoT sensor layer, fog layer and cloud layer. In the healthcare IoT sensor layer, the routing process with the collection of patient health condition data is carried out. On the other hand, in the fog layer COVID-19 detection is performed by employing a Deep Neuro Fuzzy Network (DNFN) trained by the proposed Remora Namib Beetle JSO (RNBJSO). Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). Finally, in the cloud layer, the detection of COVID-19 employing Deep Long Short Term Memory (Deep LSTM) trained utilizing proposed CSJSO is performed. The evaluation measures utilized for CSJSO_Deep LSTM in database-1, such as Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) observed 0.062 and 0.252 in confirmed cases. The measures employed in database-2 are accuracy, sensitivity and specificity achieved 0.925, 0.928 and 0.925 in K-set.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要