Unveiling pre-crash driving behavior common features based upon behavior entropy

Ning Xie,Rongjie Yu, Yang He, Hao Li, Shoubo Li

ACCIDENT ANALYSIS AND PREVENTION(2024)

引用 0|浏览0
暂无评分
摘要
Driving behavior is considered as the primary crash influencing factor, whereas studies claimed that over 90% crashes were attributed by behavior features. Therefore, unveil pre-crash driving behavior features is of great importance for crash prevention. Previous studies have established the correlations between features such as vehicle speed, speed variability, and the probability of crash occurrences, but these analyses have concluded inconsistent results. This is due to the varying operating characteristics among roadway facilities, where given the same driving behavior statistical features, the corresponding traffic states are not identical. In this study, a behavioral entropy index was proposed to address the abovementioned issue. First, through comparing the individual driving behavior with the group distribution, behavioral entropy index was calculated to quantify the abnormality of driving behavior. Then, crash classification models were established by comparing the behavioral entropy prior to crash events and normal driving conditions. The empirical analyses have been conducted based on 1,634,770 naturalistic driving trajectories and 1027 crash events. And models have been carried out for urban roadway sections, urban intersections, and highway sections separately. The results showed that utilizing the behavior entropy instead of the statistical features could enhance the crash classification accuracy by 11.3%. And common pre-crash features of increased behavioral entropy were identified. Moreover, the speed coefficient of variation (QCV) entropy was concluded as the most influencing factor, which can be used for real-time driving risk monitoring and enables individual-level hazard mitigation.
更多
查看译文
关键词
Behavior entropy,Naturalistic driving data,Abnormality of driving behavior,Universal crash precursors identification,Crash classification model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要