Upgrading Epoxy Supports for Enzyme Immobilization by Affinity Function Doping-A Case Study with Phenylalanine Ammonia-Lyase from Petroselinum crispum

Balint Alacs, Anna Zrinyi,Gabor Hornyanszky,Laszlo Poppe,Evelin Bell, Immacolata Serra

CATALYSTS(2024)

引用 0|浏览0
暂无评分
摘要
This article provides a method to upgrade epoxy-functionalized carriers for covalent enzyme immobilization to selective carriers suitable for covalent immobilization of metal affinity-tagged enzymes without the need of preliminary enzyme purification. Affinity function doping of the epoxy-functionalized surface introduces an advanced possibility to avoid the costly and time-consuming downstream processes required for efficient immobilization on non-selective epoxy carriers. Our approach is based on the partial functionalization of surface epoxides via a proper diamine-derived linker and an ethylenediaminetetraacetic dianhydride-based chelator charged with cobalt ions. The solid macroporous carriers, doped with metal affinity functions, have both coordinative binding ability (rapid anchoring the metal affinity-tagged enzymes to the surface) and subsequent covalent bond-forming ability (preferred binding of the tagged enzyme to the surface after proper washing by the residual epoxide functions), enabling a single operation for the enrichment and immobilization of a recombinant phenylalanine ammonia-lyase from parsley fused to a polyhistidine affinity tag. The immobilized PcPAL was applied in the ammonia elimination of racemic phenylalanine, 4-chlorophenylalanine, and 4-bromophenylalanine to produce the corresponding d-phenylalanines, in addition to the formation of (E)-cinnamates, as well as in ammonia addition reactions to (E)-cinnamates, yielding the corresponding enantiopure l-phenylalanines.
更多
查看译文
关键词
enzyme immobilization,epoxy resin,metal ion affinity,phenylalanine ammonia-lyase,selective binding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要