谷歌浏览器插件
订阅小程序
在清言上使用

Novel fluorescence nano-orbital biosensor for highly sensitive microRNA detection

Cong Fan, Longjie Xie, Feng Zhao, Jingjing Wang,Xiandong Lin,Xian Chen

ANALYTICA CHIMICA ACTA(2024)

引用 0|浏览8
暂无评分
摘要
Background: MicroRNAs play an important role in regulating cell function and gene expression. Early prevention and clinical diagnosis of diseases have high requirements for high-sensitivity detection of microRNAs. Due to the limitations of tedious operation and large sample size, miRNA with small molecular weight and low expression abundance cannot be accurately detected in traditional miRNA detection. To improve the sensitivity and accuracy of detection, we established a novel biosensor based on nucleic acid circuit of signal amplification, which converted miRNA recognition into a fluorescence signal for amplification.Results: We designed a biosensor based on an exponential amplification reaction with cascaded HCR and DNAzyme nucleic acid circuit (named E-NOF biosensor) by amplicon sub-fragments to trigger the construction of fluorescence nano-orbitals (NOF), which could be used to detect miRNA ultrasensitively. By modifying two fluorophores (Cy3 and Cy5) on the chain of constructing nano-orbitals, when the amplicon triggered the construction of nano-orbitals, fluorescence resonance energy transfer (FRET) occurred between Cy3 and Cy5, and then two fluorescence signals with different trends could be observed. Therefore, through the ratio of the two signals, we could quantitatively and quickly detect the miRNA from 1 fM to 100 nM, and the E-NOF biosensor detection limit was as low as 0.129 fM. Furthermore, the HCR nucleic acid circuit cascaded with DNAzyme could enrich the fluorophores on the nano-orbitals and significantly enhance the fluorescence signal by accelerating the reaction rate.Significance: According to our understanding, the E-NOF biosensor is the first strategy to cascade EXPAR with HCR and DNAzyme nucleic acid circuit for miRNA-1246 detection. Accurate results can be obtained in only 120 min. Compared with the traditional HCR system, the sensitivity of the new E-NOF biosensor is increased by 1 x 109 times. Furthermore, the biosensor can also detect biomarkers in human serum samples. It has great potential in miRNA detection and identification.
更多
查看译文
关键词
Exponential amplification reaction,Deoxyribozyme,Hybridization chain reaction,Nano-orbital fluorescence,Fluorescence resonance energy transfer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要