Kuramoto Oscillators: algebraic and topological aspects

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
We investigate algebraic and topological signatures of networks of coupled oscillators. Translating dynamics into a system of algebraic equations enables us to identify classes of network topologies that exhibit unexpected behaviors. Many previous studies focus on synchronization of networks having high connectivity, or of a specific type (e.g. circulant networks). We introduce the Kuramoto ideal; an algebraic analysis of this ideal allows us to identify features beyond synchronization, such as positive dimensional components in the set of potential solutions (e.g. curves instead of points). We prove sufficient conditions on the network structure for such solutions to exist. The points lying on a positive dimensional component of the solution set can never correspond to a linearly stable state. We apply this framework to give a complete analysis of linear stability for all networks on at most eight vertices. Furthermore, we describe a construction of networks on an arbitrary number of vertices having linearly stable states that are not twisted stable states.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要