Quantum squeezing in a nonlinear mechanical oscillator

Stefano Marti,Uwe von Lüpke, Om Joshi,Yu Yang, Marius Bild, Andraz Omahen,Yiwen Chu,Matteo Fadel

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
Mechanical degrees of freedom are natural candidates for continuous-variable quantum information processing and bosonic quantum simulations. These applications, however, require the engineering of squeezing and nonlinearities in the quantum regime. Here we demonstrate ground state squeezing of a gigahertz-frequency mechanical resonator coupled to a superconducting qubit. This is achieved by parametrically driving the qubit, which results in an effective two-phonon drive. In addition, we show that the resonator mode inherits a nonlinearity from the off-resonant coupling with the qubit, which can be tuned by controlling the detuning. We thus realize a mechanical squeezed Kerr oscillator, where we demonstrate the preparation of non-Gaussian quantum states of motion with Wigner function negativities and high quantum Fisher information. This shows that our results also have applications in quantum metrology and sensing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要